On Wed, Mar 17, 2021 at 9:43 AM Peng Fan <peng.fan@nxp.com> wrote:
>
> > Subject: Re: EHF + OPTEE on ARM64
> >
> > On Wed, Mar 17, 2021 at 9:02 AM Peng Fan <peng.fan@nxp.com> wrote:
> > >
> > > > Subject: Re: EHF + OPTEE on ARM64
> > > >
> > > > On Wed, Mar 17, 2021 at 8:41 AM Peng Fan <peng.fan@nxp.com> wrote:
> > > > >
> > > > > > Subject: Re: EHF + OPTEE on ARM64
> > > > > >
> > > > > > On Tue, Mar 16, 2021 at 11:08 AM Peng Fan <peng.fan@nxp.com>
> > wrote:
> > > > > > >
> > > > > > > Hi,
> > > > > > >
> > > > > > > In bl31/ehf.c, there are following two lines, per my
> > > > > > > understanding, when cpu is in secure world, the non-secure
> > > > > > > interrupt as FIQ(GICv3) will be directly catched by EL3, not S-EL1
> > > > > > > /* Route EL3 interrupts when in Secure and Non-secure.
> > */
> > > > > > > set_interrupt_rm_flag(flags, NON_SECURE);
> > > > > > > set_interrupt_rm_flag(flags, SECURE);
> > > > > > >
> > > > > > > So this will conflict with OP-TEE, because OP-TEE needs catch
> > > > > > > NS-interrupt as FIQ in S-EL1 world.
> > > > > >
> > > > > > In the case of GICv3, OP-TEE is configured to receive the
> > > > > > non-secure interrupts as FIQ and secure interrupts as IRQ. See
> > CFG_ARM_GICV3.
> > > > >
> > > > > But EHF needs NS-interrupt FIQ be catched by EL3 if I understand
> > > > > correct, per " set_interrupt_rm_flag(flags, SECURE);"
> > > > >
> > > > > So currently EHF could not work together with OP-TEE, right?
> > > >
> > > > To be honest, I'm not completely sure what EHF does. From OP-TEE
> > > > point of view we expect to receive the non-secure interrupts as a
> > > > way of doing a controlled exit. This allows OP-TEE to resume
> > > > execution with a different core on re-entry. If EL3 takes the
> > > > non-secure interrupts directly it will have to make sure to only re-enter
> > OP-TEE on this core as a return from exception.
> > >
> > > Is this easy to be achieved?
> >
> > I don't know, it depends on what you intend to do with this non-secure
> > interrupt. If it's handled at EL3 and then there's a return from exception back
> > to S-EL1 there's likely no harm done. But if there's a world switch involved
> > there might be trouble, OP-TEE might not be in a suitable state for a world
> > switch.
> >
> > >
> > > Or by using opteed_sel1_interrupt_handler, could we have similar
> > > behavior to allow the other core resume execution?
> >
> > Only OP-TEE itself can make a controlled exit as there's an internal state to
> > maintain. Currently that's signalled with a non-secure interrupt.
>
>
> Per EHF,
https://trustedfirmware-a.readthedocs.io/en/latest/components/exception-handling.html?highlight=Exception%20Handling%20Framework
> On GICv3 systems, when executing in S-EL1, pending Non-secure interrupts of
> sufficient priority are signalled as FIQs, and therefore will be routed to EL3.
> As a result, S-EL1 software cannot expect to handle Non-secure interrupts at S-EL1.
> Essentially, this deprecates the routing mode described as CSS=0, TEL3=0.
>
> In order for S-EL1 software to handle Non-secure interrupts while having EHF enabled,
> the dispatcher must adopt a model where Non-secure interrupts are received at EL3,
> but are then synchronously handled over to S-EL1.
>
> The issue to me here how to synchronously handled over to S-EL1 and not break optee.
I understand. OP-TEE is masking interrupts in some critical sections,
while in such a state OP-TEE cannot handle any asynchronous interrupt.
Temporarily masking interrupts is normally a quick operation so we do
it in quite a few places.
So the crux of the problem is to make sure that OP-TEE is in a state
where it can make a controlled exit. I don't have any good ideas for
this right now.
Cheers,
Jens