
TrustedFirmware
OpenCI User's Guide

Version 0.1 Initial Draft
February 10, 2021

Table of Contents
User Guide 5

How to Contribute Code 5
Gerrit Setup 5
Commit and review 6

From the maintainer's POV 7
Manual Job trigger 8

LAVA documentation 9
Supported platforms 9

TF-A supported platforms 9
TF-M supported platforms 10

How to navigate tf.validation.linaro.org 10
How to read a job and investigate results 11

Pipeline description 13
TF-A CI pipeline description 13
TF-M CI pipeline description 19

TF-M Job dependencies 20
The TF Jenkins Job Builder (JJB) configs 21
JJBs and Jenkins Jobs 22
Calling CI scripts from JJB jobs 22

CI Scripts overview 24
TF-A CI scripts overview 24
TF-M CI scripts overview 27

TF LAVA Instance 29

TF LAVA instance replication 29
LAVA Master 30
LAVA Dispatchers 30
Upgrades 30
LAVA instance changes 30
Current list of available devices 31

Local LAVA instance set up 31

New device enablement in LAVA 31

Board setup 31
Juno 31

Peripherals 31
Deployment 31
Troubleshooting 31

MPS2 32
Peripherals 32
Deployment 32
Troubleshooting 32

Musca B1 33
Flashing the device for the first time. 33

Version 0.1 Initial Draft
February 10, 2021

Turn on automation 33
Turn auto power on 33

Adding Boards to LAVA 33
Hardware Requirements 34
How to get your board installed in the Linaro Cambridge Lab 34

TF LAVA instance - tf.validation.linaro.org 35

TF LAVA instance replication 35
LAVA Master 36
LAVA Dispatchers 36
Upgrades 36
LAVA instance changes 37
Current list of available devices 37

Local LAVA instance set up 37

New device enablement in LAVA 37

Board setup 37
Juno 37

Peripherals 37
Deployment 38
Troubleshooting 38

MPS2 38
Peripherals 38
Deployment 38
Troubleshooting 39

Musca B1 39
Flashing the device for the first time. 39
Turn on automation 39
Turn auto power on 39

SQUAD 40
TF-A 40
TF-M 40

Staging Trusted Firmware System 41
Brief description of the setup 41
Rules & Environment setup 41
How to setup basic next environment 42

Workflow for next/tf-a-job-configs.git 43
Workflow for other repositories 44

Misc Info 44
Relevant Tickets 44
Slides 45

Version 0.1 Initial Draft
February 10, 2021

1.User Guide
This Google Document is a draft for development and review. Once reviewed, the doc will be
made available on Phabricator on the trustedfirmware.org website where additional content
will be added and reviewed.

This guide briefly explains how to use and contribute to the Trusted Firmware project
https://www.trustedfirmware.org/, in particular the Trusted Firmware A
https://www.trustedfirmware.org/projects/tf-a/ and Trusted Firmware M
https://www.trustedfirmware.org/projects/tf-m/.

How to Contribute Code
The Trusted Firmware core projects, TF-M and TF-A, are both open source projects and
both share the same way to accept user contributions. Code changes, commonly known as
patches or patchsets, are git-tracked so once the corresponding project is cloned, all content
(history of previous patches which now are commits) is available at the user's machine.

TF projects use Gerrit https://review.trustedfirmware.org/dashboard/self as a centralized
system to push, update, review and review patches. Contributors must push their patches to
gerrit, so CI and reviewers can see the proposed change. One can see the open ones at
https://review.trustedfirmware.org/q/status:open.

Once a patch is approved, one of the core maintainers merges it to the main branch (master)
through Gerrit. The same cycle is repeated for every patch, where a patch series may be
merged in one step.

Mailing lists https://lists.trustedfirmware.org/mailman/listinfo/tf-a
https://lists.trustedfirmware.org/mailman/listinfo/tf-m are used to communicate latest news
and also it is the main channel for users to post questions or issues, so it is a good idea to
subscribe to these. Note, the mailing lists are not intended for patch reviews, so patches
should go into Gerrit and news/questions/issues through the mailing lists.

Gerrit Setup

Once the project is cloned, there are some two extra steps to setup gerrit properly: 1. setting
up the gerrit remote repository and 2. Git-gerrit package installation

For example, under the TF-A project, use the following command to add the remote

Version 0.1 Initial Draft
February 10, 2021

https://www.trustedfirmware.org/
https://www.trustedfirmware.org/projects/tf-a/
https://www.trustedfirmware.org/projects/tf-m/
https://review.trustedfirmware.org/dashboard/self
https://review.trustedfirmware.org/q/status:open
https://lists.trustedfirmware.org/mailman/listinfo/tf-a
https://lists.trustedfirmware.org/mailman/listinfo/tf-m

$ git remote add gerrit ssh://<gerrit
user>@review.trustedfirmware.org:29418/TF-A/trusted-firmware-
a

For TF-M, the same command applies except that remote’s url is a bit different

$ git remote add gerrit ssh://<gerrit
user>@review.trustedfirmware.org:29418/TF-M/trusted-firmware-m

As a safety check, run the command git remote -v and make sure gerrit remote is
present. The next step is to install the git-gerrit package in your corresponding Linux
distribution. For example, on Ubuntu this would be

$ sudo apt install git-gerrit

and finally define the gerrit remote to be used with the following command

$ git review -r

If no issues are found at this point, you should be ready to start contributing to the project!

Commit and review

No matter what change you want to make in any repository, one needs to create one or
more commits into a local branch before submission. All commits must have ‘Signed-off-by’
and ‘Change-id’ strings in the commit description otherwise submission fails. The
‘Signed-off-by’ is introduced explicitly by the user (git commit -s) and the ‘Change-id’
automatically created by the git-gerrit plugin. Patches should be atomic, just targeting
one task. A commit’s subject should answer the question ‘what changed’ and the commit’s
description answers the question ‘why it changed’. Be clear and always use present verbs,
i.e use Add instead of Adding.

Once your commits are ready, type

git review

This command takes care of all the internal commands needed to send the patch to Gerrit,
as seen below:

Version 0.1 Initial Draft
February 10, 2021

Once a patch is submitted, you must include one or more reviewers. The question then
raises: who should I add as a reviewer? One simple approach would be to look at the git
history of the files you are modifying, and look for authors who have committed recently.

git log <path to file>

Once reviewers are included, you would probably get some feedback pretty soon. TF
projects are quite active but in case you do not get any activity in a couple of days, reply
from Gerrit indicating that you would like some feedback. Take the time to understand and
review every comment and response properly, do corrections and update the patch promptly
if required. Keep polishing the patch until all feedback/observations are resolved. A good
practice is to create a new branch for each patch update (suffix a version number on the
branch name) so one can switch back and forth between patch versions. CI output and
reviewers’ comments are reflected in gerrit and email (the one that appears in your patch
metadata), so be sure to check any of these after submission.

More details about Gerrit can be found in the upstream documentation:
https://gerrit-documentation.storage.googleapis.com/Documentation/3.3.1/index.html

From the maintainer's POV
All CI is done with Jenkins at https://ci.trustedfirmware.org/. There are lots of jobs so as a
first impression, it is difficult to follow the CI flow. Section 4, Pipeline description, describes
each project’s CI in detail.

Each project, TF-A and TF-M, have different CI jobs and scripts hosted in the following repos

Version 0.1 Initial Draft
February 10, 2021

https://gerrit-documentation.storage.googleapis.com/Documentation/3.3.1/index.html
https://ci.trustedfirmware.org/

● TF-A CI Jobs https://git.trustedfirmware.org/ci/tf-a-job-configs.git/
● TF-A CI Scripts https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/
● TF-M CI Jobs https://git.trustedfirmware.org/ci/tf-m-job-configs.git/
● TF-M CI Scripts https://git.trustedfirmware.org/ci/tf-m-ci-scripts.git/

The job config repositories contain Jenkins Job Definitions, called JJB (Jenkins Job Builders)
files. The CI scripts repositories host scripts that are required for the CI, i.e build scripts,
static checks, etc.

Manual Job trigger
For patches that arrive at gerrit, the CI is explicitly triggered by a core maintainer. However
there are cases where a particular job needs to be rebuilt. Jobs can be rebuilt at any level,
from the trigger job to the job that builds or launches the LAVA execution. For example, the
below picture shows a trigger job with the ‘Build with Parameters’ and ‘Rebuild last’ options.
Both options allow the maintainer to change any job parameter before actually executing it.

Most probably, you may want to go to a specific failed job and ‘Rebuild’

There may be many reasons to rebuild but perhaps the most trivial one is to make sure the
error is valid and not a transient one. Look at the job’s console for errors.

Version 0.1 Initial Draft
February 10, 2021

https://git.trustedfirmware.org/ci/tf-a-job-configs.git/
https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/
https://git.trustedfirmware.org/ci/tf-m-job-configs.git/
https://git.trustedfirmware.org/ci/tf-m-ci-scripts.git/

2.LAVA documentation

Supported platforms
TF project support the following platforms in LAVA
https://tf.validation.linaro.org/scheduler/device_types

TF-A supported platforms
Until recently, the only supported platform was the Juno board but now it also supports FVP
models:

● https://tf.validation.linaro.org/scheduler/device_type/juno
● https://tf.validation.linaro.org/scheduler/device_type/fvp

FVP models are virtual platforms that are able to emulate specific Arm reference designs or
platforms. See the Arm documentation for more details:
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms

These models are present on several docker images and LAVA uses these to boot and test a
particular model. The specific docker image and model type is defined at the (LAVA) job
definition. Docker images (containing the models) are available in a private docker registry
(987685672616.dkr.ecr.us-east-1.amazonaws.com) that LAVA has access. At the
time of this writing, these are the docker image names

● fvp:fvp_base_revc-2xaemv8a_11.12_38
● fvp:foundation_platform_11.12_38
● fvp:fvp_arm_std_library_11.12_38

Tag name, i.e. fvp_base_revc-2xaemv8a_11.12_38, corresponds to the particular
model download from
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms.

Version 0.1 Initial Draft
February 10, 2021

https://tf.validation.linaro.org/scheduler/device_types
https://tf.validation.linaro.org/scheduler/device_type/juno
https://tf.validation.linaro.org/scheduler/device_type/fvp
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms

TF-M supported platforms
TF-M LAVA devices are:

● mps https://tf.validation.linaro.org/scheduler/device_type/mps
● musca_b https://tf.validation.linaro.org/scheduler/device_type/musca-b
● qemu https://tf.validation.linaro.org/scheduler/device_type/qemu.

How to navigate tf.validation.linaro.org
All LAVA jobs triggered by Jenkins are executed at the TF LAVA lab
https://tf.validation.linaro.org/ instance. The Jenkins jobs that launches LAVA jobs are
tf-a-builder https://ci.trustedfirmware.org/job/tf-a-builder/ and tf-m-lava-submit
https://ci.trustedfirmware.org/job/tf-m-lava-submit/. The Jenkins jobs contain the
corresponding LAVA id which can be used to find the corresponding job at
https://tf.validation.linaro.org/. In case of tf-a-builder job, the LAVA log itself is fetched
from LAVA lab and attached to the job as seeing below

At the https://tf.validation.linaro.org/scheduler/alljobs jobs site, one can go to a particular job
check results directly from LAVA

Version 0.1 Initial Draft
February 10, 2021

https://tf.validation.linaro.org/scheduler/device_type/mps
https://tf.validation.linaro.org/scheduler/device_type/musca-b
https://tf.validation.linaro.org/scheduler/device_type/qemu
https://tf.validation.linaro.org/
https://ci.trustedfirmware.org/job/tf-a-builder/
https://ci.trustedfirmware.org/job/tf-m-lava-submit/
https://tf.validation.linaro.org/
https://tf.validation.linaro.org/scheduler/alljobs

One powerful feature is the possibility to resubmit jobs: this enables the user to quickly
modify a job definition and test it without the need to retriggered from Jenkins.

How to read a job and investigate results
The entrypoint to read a job failure is looking at the job’s landing page, i.e.
https://tf.validation.linaro.org/scheduler/job/74086

Version 0.1 Initial Draft
February 10, 2021

https://tf.validation.linaro.org/scheduler/job/74086

Depending on the device type and job definition, the output can vary considerably. One can
filter out relevant logs by clicking the different log levels. As in any system, failures can occur
at any time and for different reasons, i.e introduced by a user's patch or
scripts/infrastructure. In any case, a core maintainer should monitor and report or fix it
accordingly.

Version 0.1 Initial Draft
February 10, 2021

3.Pipeline description
The TF Open CI project is divided into two separate projects, each handling the respective
project. Each is different in design so we describe each separately.

TF-A CI pipeline description
The TF-A CI pipeline https://git.trustedfirmware.org/ci/tf-a-job-configs.git/ had a refactor
based on https://developer.trustedfirmware.org/w/collaboration/openci/, going from testing a
single test configuration to hundreds of them. Besides improving considerably the QA, it
added some complexity as we will see below.

At the time of this writing, there are two (mostly) identical CIs, one running inside Arm
https://jenkins.oss.arm.com/ (Internal CI) and one at https://ci.trustedfirmware.org/ (Open
CI). These are two CI instances running in parallel but in different environments: the internal
CI runs in a single node (master node) while the Open CI in multiple nodes (docker nodes).
In the near future, only the Open CI will be running once all the internal CI features are fully
migrated.

Below is a general picture of the Trusted firmware A CI flow. Top boxes are Jenkins jobs,
except those with .sh extensions.

The first job, the trigger-job, can be any job defined below, each covering a set of platforms
and build/run configurations through test groups (TEST_GROUPS), ultimately splitted as

Version 0.1 Initial Draft
February 10, 2021

https://git.trustedfirmware.org/ci/tf-a-job-configs.git/
https://developer.trustedfirmware.org/w/collaboration/openci/
https://jenkins.oss.arm.com/job/tf-ci-gerrit-tforg-trigger/220/
https://ci.trustedfirmware.org/

test descriptions (TEST_DESC). A test description is tested by tf-a-builder job and a
LAVA job is launched once artifacts are ready to be consumed.

In terms of the trigger source, jobs can be classified by either gerrit or scheduled

● Gerrit:
○ tf-gerrit-tforg-l1: multijob, Allow +1, TF-A
○ tf-gerrit-tforg-l2: multijob, Allow +2, TF-A
○ tf-tftf-gerrit-tforg-l1: multijob, Allow +1, TF-A-tests
○ tf-tftf-gerrit-tforg-l2: multijob, Allow +2, TF-A-tests

● Scheduled: daily triggered
○ tf-daily: scheduled daily

All the above jobs rely on downstream jobs,

● tf-main: multijob, TF-A and TF-A-tests
● tf-coverity: freestyle, runs coverity scan
● tf-static-checks: runs Arm static code checks
● tf-ci-gateway: split a test group (TEST_GROUPS) into multiple

‘.test’ files, each representing a test description
(TEST_DESC)

● tf-a-builder: freestyle, builds the package and launch a LAVA
job

Any job can be triggered manually by authorized users. Gerrit jobs are those triggered on
behalf of gerrit actions, either ‘Allow +1’ or ‘Allow +2’, and track a particular project,
either TF-A https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/ or TF-A tests
https://git.trustedfirmware.org/TF-A/tf-a-tests.git/. The following screenshot shows and
example of the tf-gerrit-tforg-l1 job at the Jenkins instance

The tf-gerrit-tforg-l1 indicates the tracking project, tf-gerrit-tforg-l1, and the level,
tf-gerrit-tforg-l1. Levels indicate testing depth (test descriptions coverage) and are used in
different phases in the development phase as seen below

Version 0.1 Initial Draft
February 10, 2021

https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/
https://git.trustedfirmware.org/TF-A/tf-a-tests.git/

The job tf-daily runs daily, uses the latest code (the HEAD commit) and triggers two
jobs: tf-main and tf-coverity. The job tf-main is the one covering most platforms so it
takes longer to complete (approximately 1.5 hours)

Notice that the tf-main job also triggers tf-static-checks, the job that launches
project-related static checks (copyright presence, headers in alphabetical order, line endings,
coding style and banned APIs) and execute Clang static analyzer (scan-build). The job

Version 0.1 Initial Draft
February 10, 2021

tf-coverity runs the Coverity static code check and reports metrics (defects) at
https://scan.coverity.com/projects/arm-software-arm-trusted-firmware?tab=overview

The job tf-a-builder is the builder job and its execution is containerized inside
docker-amd64-tf-a-bionic defined at https://git.trustedfirmware.org/ci/dockerfiles.git/
repository. Anyone can fetch it with the following command and use it for local compilation

docker pull trustedfirmware/ci-amd64-ubuntu:bionic

The result of tf-a-builder is a set of artifacts: binaries, build log, environment files, etc.

In particular, if build produces a LAVA definition file, job.yaml, a LAVA job is launched
through SQUAD https://qa-reports.linaro.org/tf/. Once the LAVA job finishes, jenkins fetches
the log from LAVA and stores it in the corresponding jenkins job. It is worth mentioning that
not all tf-a-builder jobs produce a LAVA job, i.e fvp model not supported, ‘nil’ run
configuration provided in the test description, static check, etc. however most FVP and Juno
produce one. One can see all executed LAVA jobs at
https://tf.validation.linaro.org/scheduler/alljobs.

Finally, depending on the CI execution outcome, this is reflected in gerrit as
‘TrustedFirmware Core Review’ comments

Version 0.1 Initial Draft
February 10, 2021

https://scan.coverity.com/projects/arm-software-arm-trusted-firmware?tab=overview
https://git.trustedfirmware.org/ci/dockerfiles.git/
https://qa-reports.linaro.org/tf/
https://tf.validation.linaro.org/scheduler/alljobs

Results from those LAVA executed jobs on behalf of the corresponding gerrit patch are also
reflected in gerrit

In case of a job failure, it is more likely that you want to investigate the issue starting at the
gerrit job, then following the CI job chain starting from the trigger job (top-bottom approach):
1. analyze results from the gerrit job, 2. use the report table produced by each
tf-ci-gateway job, 3. the tf-a-builder job and finally 4. the tf-a-builder’s
console. Looking at the following screenshot should help clarifying this concept

1. Gerrit job level:

2. tf-ci-gateway level:

Version 0.1 Initial Draft
February 10, 2021

3. tf-a-builder level:

4. tf-a-builder’s console view:

Version 0.1 Initial Draft
February 10, 2021

TF-M CI pipeline description

TF-M jobs are found at https://ci.trustedfirmware.org/ and can be classified depending on the
code coverage

● Release job: active during release stage, manually triggered. XL size
● Nightly job: active everyday to cover latest HEAD; in case of failure, notification is

done through the tf-m mailing list. M size
● Per-patch job: gerrit patch verify before merge. Size S

Below is a diagram that shows their relationship and the amount of code coverage targeted.

Jobs can also be classified depending on their specific task:

● Production jobs
○ tf-m-builds-docs-nightly

Version 0.1 Initial Draft
February 10, 2021

https://ci.trustedfirmware.org/

○ tf-m-build-and-test
○ tf-m-coverity
○ tf-m-static-checks
○ tf-m-nightly (scheduled)
○ tf-m-static (per-patch)
○ tf-m-build-docs
○ tf-m-build-config
○ tf-m-lava-submit
○ tf-m-cppcheck
○ tf-m-checkpatch

● Release jobs
○ tf-m-release (release)
○ tf-m-code-coverage

● Infra jobs
○ tf-m-infra-health
○ tf-m-build-config-infra-health

TF-M Job dependencies

When a patch arrives at https://review.trustedfirmware.org/ and reviewed, a maintainer may
allow the CI to be executed, which in turn triggers tf-m-static. This is exactly the same
CI workflow as TF-A. In case of failure, the job cannot be merge into the stable branch. The
tf-m-static triggers many more jobs as seen in the picture below

The job tf-m-nigthly is a more extensive job, triggered everyday and tests the latest
code (HEAD) at the project

Version 0.1 Initial Draft
February 10, 2021

https://review.trustedfirmware.org/

In case the nightly job fails, an email notification is sent through the mailing list
https://lists.trustedfirmware.org/mailman/listinfo/tf-m-ci-notifications . The maintainer is
responsible for looking at the failed errors and identifying the (commit) culprit then reporting
it to the developer.

The TF Jenkins Job Builder (JJB) configs
The TF project uses yaml files to define Jenkins jobs (JJB)
https://docs.openstack.org/infra/jenkins-job-builder/definition.html. Jobs currently defined for
both projects are at https://git.trustedfirmware.org/ci/tf-m-job-configs.git/ and
https://git.trustedfirmware.org/ci/tf-a-job-configs.git/. Job triggers are special types of jobs
that listen to certain gerrit events. For example the job
https://git.trustedfirmware.org/ci/tf-a-job-configs.git/tree/tf-gerrit-tforg-l1.yaml triggers every
time a TF-A maintainer ‘Allows +1’ the CI to execute as defined the job’s trigger section

.

.

.
triggers:
- gerrit:
server-name: review.trustedfirmware.org
trigger-on:

- comment-added-event:
approval-category: "Allow-CI"
approval-value: 1

projects:
- project-compare-type: PLAIN

project-pattern: TF-A/trusted-firmware-a
branches:
- branch-compare-type: PLAIN
branch-pattern: integration

Version 0.1 Initial Draft
February 10, 2021

https://lists.trustedfirmware.org/mailman/listinfo/tf-m-ci-notifications
https://docs.openstack.org/infra/jenkins-job-builder/definition.html
https://git.trustedfirmware.org/ci/tf-m-job-configs.git/
https://git.trustedfirmware.org/ci/tf-a-job-configs.git/
https://git.trustedfirmware.org/ci/tf-a-job-configs.git/tree/tf-gerrit-tforg-l1.yaml

JJBs and Jenkins Jobs
JJB defines the behaviour of a Job through a YAML file, where Jenkins use these to create
jobs (it is similar to Class and Object concepts in Object Oriented Programming). For
example this is JJB of TF-A L1 trigger
https://git.trustedfirmware.org/ci/tf-a-job-configs.git/tree/tf-gerrit-tforg-l1.yaml which is
instanciated at https://ci.trustedfirmware.org/job/tf-gerrit-tforg-l1/. Similar pattern applies for
the rest of the JJB files.

Calling CI scripts from JJB jobs
JJB files themselves do not do much unless they execute something useful. CI scripts are
kept in separate repositories depending on the project. Below is the relationship between
jobs and scripts repositories per project

● TF-A CI Jobs https://git.trustedfirmware.org/ci/tf-a-job-configs.git/
● TF-A CI Scripts https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/
● TF-M CI Jobs https://git.trustedfirmware.org/ci/tf-m-job-configs.git/
● TF-M CI Scripts https://git.trustedfirmware.org/ci/tf-m-ci-scripts.git/

In general, Jenkins jobs call scripts, the latter do the corresponding task. For example, below
is shown again CI flow for the TF-A project

Version 0.1 Initial Draft
February 10, 2021

https://git.trustedfirmware.org/ci/tf-a-job-configs.git/tree/tf-gerrit-tforg-l1.yaml
https://ci.trustedfirmware.org/job/tf-gerrit-tforg-l1/
https://git.trustedfirmware.org/ci/tf-a-job-configs.git/
https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/
https://git.trustedfirmware.org/ci/tf-m-job-configs.git/
https://git.trustedfirmware.org/ci/tf-m-ci-scripts.git/

Where builders.sh is just a setup script (located at TF-A jobs repo) that finally calls
run_local_ci.sh script located CI scripts repo, which is the entrypoint of the script execution.
The run_local_ci.sh in turn calls others scripts that finally builds the package.

Version 0.1 Initial Draft
February 10, 2021

5.CI Scripts overview

TF-A CI scripts overview
The TF-A CI repository https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/ contains several
folders and scripts for different purposes but we will not describe each one. Instead we will
overview build package operation. Building a package means building (compiling) a specific
platform with certain build parameters and post-build setup tasks, both indicated in a single
test configuration (string or filename). The operation is depicted in the following diagram

The test configuration concisely specifies a single test: what set of images to build, how to
build them, and finally, how to run a test using the aforementioned images. A test
configuration is a specially-named plain text file whose name comprises two parts: the build
configuration and the run configuration.

The test configuration file is named in the following format:

{tf-build-config | nil}[,tftf-build-config]: { run-config | nil}

That is, it contains:

● Mandatory build configuration for TF, or nil if TF is not required to be built.
● Optional build configuration for TFTF;
● Mandatory run configuration, or nil for build-only configs.

The TF and TFTF build configs are separated by a comma; the build and run configs are
separated by a colon. The test configuration is consumed by the build script , and produces
a build package. For example, the test configuration
fvp-default,fvp-default:fvp-tftf-fip.tftf-aemv8a-debug chooses:

Version 0.1 Initial Draft
February 10, 2021

https://git.trustedfirmware.org/ci/tf-a-ci-scripts.git/

● To build TF with the fvp-default config;
● To build TFTF with the fvp-default config;
● To apply run config fvp-tftf-fip.tftf-aemv8a-debug

Build configurations are plain text files containing build parameters for a component; either
TF or TFTF. The build parameters are sorted and listed one per line, and would appear on
the component's build command line verbatim. Up to two build configurations can be
specified – one for TF (mandatory), and another one for TFTF (optional). If the test doesn't
require Trusted Firmware to be built (for example, for a TFTF build-only configuration), it
must be specified as nil.

For example, the TF build config
fvp-aarch32-tbb-mbedtls-rsa-ecdsa-with-ecdsa-rotpk-rsa-cert has the
following contents as of this writing:

AARCH32_SP=sp_min
ARCH=aarch32
ARM_ROTPK_LOCATION=devel_ecdsa
CROSS_COMPILE=arm-none-eabi-
GENERATE_COT=1
KEY_ALG=rsa
PLAT=fvp
ROT_KEY=plat/arm/board/common/rotpk/arm_rotprivk_ecdsa.pem
TF_MBEDTLS_KEY_ALG=rsa+ecdsa
TRUSTED_BOARD_BOOT=1

Build configs are located under tf_config and tftf_config subdirectories in the CI
repository.

As described above, the build configuration describes what components to build, and how to
build them. Before a set of images can be exercised through the test, the CI usually needs to
execute a sequence of steps that are necessary to set up the test environment. These steps
largely depend on the specific nature of the test at hand, the platform to be run on, etc.
These steps are related to but decoupled from the build configs and are defined in run
configurations. Almost all tests run in the CI mandatorily require a certain combination of
steps above, some others optional. Because of the variability in applying the steps, and to
avoid duplication, common steps are made available as standalone script snippets, called
fragments. Individual fragments can be strung together to form a Run Configuration. Run
config fragments are located under run_config subdirectory in the CI repository.

For example, the following test configuration

tftf-l2-extensive-tests-fvp/fvp-tspd,fvp-extensive:fvp-tftf-fip.tf
tf-cortexa57x4a53x4-tspd

Version 0.1 Initial Draft
February 10, 2021

Produces the following build configs

Trusted Firmware config:

CROSS_COMPILE=aarch64-none-elf-
PLAT=fvp
SPD=tspd

Trusted Firmware TF config:

CROSS_COMPILE=aarch64-none-elf-
PLAT=fvp
TESTS=extensive

And the following run config fragments

fvp-tftf
fvp-fip.tftf
fvp-cortexa57x4a53x4
fvp-tspd

Producing the following (release) build package

.
├── artefacts
│ ├── build.log
│ ├── debug
│ │ ├── bl1.bin
│ │ ├── bl1.elf
│ │ ├── bl2.bin
│ │ ├── bl2.elf
│ │ ├── bl2u.bin
│ │ ├── bl2u.elf
│ │ ├── bl31.bin
│ │ ├── bl31.elf
│ │ ├── bl32.bin
│ │ ├── bl32.elf
│ │ ├── cactus.bin
│ │ ├── cactus.dtb
│ │ ├── cactus.elf
│ │ ├── cactus_mm.bin
│ │ ├── cactus_mm.elf
│ │ ├── el3_payload.bin
│ │ ├── fip.bin
│ │ ├── fvp-base-gicv3-psci.dtb
│ │ ├── fvp_fw_config.dtb
│ │ ├── fvp_nt_fw_config.dtb
│ │ ├── fvp_soc_fw_config.dtb

Version 0.1 Initial Draft
February 10, 2021

│ │ ├── fvp_tb_fw_config.dtb
│ │ ├── fvp_template.yaml
│ │ ├── fvp_tsp_fw_config.dtb
│ │ ├── fvp.yaml
│ │ ├── ivy.bin
│ │ ├── ivy.dtb
│ │ ├── ivy.elf
│ │ ├── job.yaml
│ │ ├── model_params
│ │ ├── ns_bl1u.bin
│ │ ├── ns_bl1u.elf
│ │ ├── ns_bl2u.bin
│ │ ├── ns_bl2u.elf
│ │ ├── quark.bin
│ │ ├── quark.dtb
│ │ ├── quark.elf
│ │ ├── run
│ │ ├── tftf.bin
│ │ └── tftf.elf
│ ├── env
│ └── release
.
.
├── fvp_template.yaml
├── fvp.yaml
├── job.yaml
├── lava_model_params
├── tmp.FlNca0PGGF
├── tmp.KMJFcZ0Zr6
├── tmp.ku5nXd85b4
├── tmp.mCaqKgvgfT
└── tmp.Sv3zjKIWz7

Ultimately, the job.yaml file above is the LAVA job definition, which contains the
information required by LAVA (artefacts’ URL, model params, container containing the
model, etc.) for a correct job execution.

TF-M CI scripts overview

The above links are separate documents that at some
point needs to be included into this doc.

Version 0.1 Initial Draft
February 10, 2021

Version 0.1 Initial Draft
February 10, 2021

6.TF LAVA Instance
The TF LAVA instance can be found at tf.validation.linaro.org.

LAVA instance for the Trusted Firmware project is set up in Linaro Harston LAB. It consists
of lava-master running on a hosted bare metal server, lava-dispatcher running on the same
server. Additional dispatchers are deployed using Raspberry Pi 41 hardware. More details
below.

TF LAVA instance settings are stored in salt and ansible repositories:
● Salt repository: https://git.linaro.org/lava/lava-lab.git/
● Ansible repositories:

○ https://git.linaro.org/lab-cambridge/ansible-lab.git/
○ https://git.linaro.org/lab-cambridge/lab-dns.git/
○ https://git.linaro.org/lab-cambridge/lab-dhcp.git/

TF LAVA instance replication
TF instance partially relies on Linaro infrastructure. Linaro’s login service (based on LDAP) is
used for users authentication and logging into the TF LAVA instance. Therefore it’s not
possible to replicate identical LAVA instance accounts outside of Linaro’s infrastructure.
Apart from that, all configurations are stored in salt or ansible repositories. Replicating the
remaining part of the instance can be done using salt and ansible tools with a new set of
inventory variables.

Before an instance is ready various ansible playbooks need to be run and, for LAVA set ups,
salt needs to be run.

For ansible, you need to go on deb-ansible host (ssh root@192.168.128.15). As root:

(cd /srv/lava-lab; git pull)
cd /etc/ansible/playbooks
ansible-playbook -i ../inventory/tf lava-lab.yml

The following playbooks are used to configure all the relevant parts:
● lab_sssd_auth.yml file: enable LDAP authentication
● lab_snmp_enable.yml file: enable SNMP, and non-free/contrib apt sources (needed

for working SNMP set up with APC PDUs)
● lab_docker.yml file: install docker apt repository and docker service itself
● lab_aws_client.yml file: enable AWS authentication with AWS to preload docker

images
● lab_lava_repo.yml file: add LAVA apt repository
● dhcp_tf.yml file: for the static leases and general DHCP server configuration

1 As required by certain classes of hardware not being differentiable before the OS boots, therefore a
single device per dispatcher allows addressing these devices via an unique dispatcher (per device).

Version 0.1 Initial Draft
February 10, 2021

https://tf.validation.linaro.org/
https://git.linaro.org/lava/lava-lab.git/
https://git.linaro.org/lab-cambridge/ansible-lab.git/
https://git.linaro.org/lab-cambridge/lab-dns.git/
https://git.linaro.org/lab-cambridge/lab-dhcp.git/

Installing LAVA (worker and master) is a manual process. After that, the lava-lab.yml file
takes care of setting up the correct device dictionaries, device types and health checks as
configured in the separate lava-lab repository.

Until the salt migration to ansible is complete you will need to go on tf-master.tflab host (ssh
root@10.88.16.10). As root:

(cd /srv/lava-lab; git pull)
salt ‘*’ state.highstate

Note: on a brand new installation, you will need to run the ‘salt’ command twice. It’s due to
an ordering problem in the salt state configuration. It will be fixed by the ansible migration.

LAVA Master
LAVA Master and dispatchers run the Debian distribution (at the time of writing, Debian 10
Buster). LAVA packages are installed from apt.lavasoftware.org repository. On top of the
basic installation, LAB specific configuration is applied with ansible.
Note: the installation of lava-server is a manual process (and still a work in progress), while
other configurations are automated and described in the ansible playbooks above.

LAVA Dispatchers
TF instance uses 2 types of dispatchers:

● x86 dispatcher running on the same hardware as LAVA master. This dispatcher hosts
Fast Models (FVP), QEMU, and Juno devices.

● Arm dispatchers running on Raspberry Pi 4 hardware. This dispatcher hosts MPS2
and Musca B1 devices.

LAVA dispatchers setup is described in the LAVA documentation:
https://lava.readthedocs.io/en/latest/admin/advanced-tutorials/deploying-rpi4b-as-worker/

Upgrades
Upgrades of LAVA software are performed after each LAVA release. All dispatchers and
master have to run the same version of LAVA software.

LAVA instance changes
All the changes are done by the LAB staff. They should be requested as Jira tickets
(https://projects.linaro.org/secure/CreateIssue.jspa) with the following fields:

● Project: LSS (LAB & System Software)
● Type: Ticket
● Component: LAB
● Client Stakeholder: Trusted Firmware

Most common cases where ticket is required include:

Version 0.1 Initial Draft
February 10, 2021

https://git.linaro.org/lava/lava-lab.git
https://lava.readthedocs.io/en/latest/admin/advanced-tutorials/deploying-rpi4b-as-worker/
https://projects.linaro.org/secure/CreateIssue.jspa

● Adding new device to the LAVA instance
● Changing firmware on the boards that require manual action
● Adding or lifting access limitations

Current list of available devices
Up-to-date list of devices is available from the LAVA web UI. A simplified view shows only
the device types. Currently, TF LAVA instance has Juno, MPS2, Musca B1 and QEMU
devices.

Local LAVA instance set up
Setting up a local LAVA instance that can be used for debugging or improving LAVA code, as
well as new device enablement can be done in a few ways. The easiest is to use the official
LAVA’s docker-compose repository and follow the README instructions.

New device enablement in LAVA
Enabling new devices in LAVA is described in the LAVA documentation.

Board setup

Juno
More details on Collaborate page: https://collaborate.linaro.org/display/CTT/Juno

Peripherals

Serial: Connected to serial console.

Power:

Ethernet: Both the front and the back interfaces need to be connected.

Storage: SSD and USB stick (for boot image).

Deployment

After various iterations of deployment methods, the current method is loading a master
image on SD card or USB stick, and booting a known good image from that. The known
good image can be found here.

Troubleshooting

The most common issue with Juno is broken PDU ports. The ports get stuck in ON mode so
the board never reboots and can thus not interrupt the boot loader.

Version 0.1 Initial Draft
February 10, 2021

https://tf.validation.linaro.org/scheduler/alldevices/active
https://tf.validation.linaro.org/scheduler/
https://git.lavasoftware.org/lava/pkg/docker-compose
https://git.lavasoftware.org/lava/pkg/docker-compose/-/blob/master/README.md
https://master.lavasoftware.org/static/docs/v2/devicetypes.html
https://collaborate.linaro.org/display/CTT/Juno
https://images.validation.linaro.org/snapshots.linaro.org/openembedded/lkft/lkft/sumo/juno/lkft/linux-stable-rc-5.1/62/juno-oe-uboot.zip

Another common issue is "Failed to erase old recovery image" which is generally an issue
with the SD card. It is solved as follows:

1. Take brand new SD card and a root/sudo user on your SD reader capable *nix device
2. Run "parted /dev/<diskID>
3. mklabel msdos
4. mkpart

a. primary
b. fat16
c. 1M
d. 2G

5. exit parted
6. mkfs.fat16 /dev/<diskID> -n JUNO<details>
7. Download the recovery image from a health check
8. Unpack and copy contents to SD card.
9. Put a new card in a Juno device and run a health check. It might have umount issues

on the first try. If so, try again.

MPS2
More details in Collaborate page: https://collaborate.linaro.org/display/CTT/MPS2

Peripherals

Serial: Connected to serial console or usb serial connected to host.

Power: 12v

Ethernet: One port connected.

USB: Mini usb connected to host.

Storage: sd card in an SD Mux.

Deployment

The technical reference manual can be found here.

An example health check with an image to use for deployment on MPS2 devices.

There is also access to a device dictionary which describes the process of using SDMux with
the board.

In order to use SDMux, the host must have sd-mux-ctrl installed.

Troubleshooting

We found that the sd card containing the boot image easily got corrupted and that would
take the board offline until manual intervention is achieved.

Version 0.1 Initial Draft
February 10, 2021

https://collaborate.linaro.org/display/CTT/MPS2
https://www.linux-automation.com/en/
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/mps2
https://tf.validation.linaro.org/scheduler/job/53307/definition
https://tf.validation.linaro.org/scheduler/device/mps2-04/devicedict
https://wiki.tizen.org/SD_MUX#Software

This is mitigated with use of the SDMux and there have been few known issues since.

SD Mux can be bought from https://shop.linux-automation.com/.

Musca B1
More details in Collaborate page: https://collaborate.linaro.org/display/CTT/MuscaB1

Flashing the device for the first time.

Flashing instructions are available on ARM community pages. It's only possible to run the
Windows version of the instructions. Currently LAB uses QSPI firmware version 3.4.

firmware: DAPLink_QSPI_V34.bin

After initial flashing is done, the rest of the setup can be done with a Linux host. Some
commands for DAPLink can be found on ARMmbed Github repository.

Turn on automation

Boards need to have the 'automation' enabled. This is done by writing the 'auto_on.cfg' file to
the USB mass storage 'MUSCA_B' while pressing nSRST button.

Turn auto power on

There is a hidden command in the v3.4 firmware: Auto power can be turned on by writing
'auto_pwr.cfg' to the USB mass storage 'MUSCA_B' while pressing nSRST button. Turning
auto power off can be done by writing 'hard_pwr.cfg' to the USB mass storage 'MUSCA_B'
while pressing the nSRST button.

Adding Boards to LAVA
"Adding a board to LAVA" can mean more than one thing, for example:

● Getting your device type supported in the LAVA software
○ See section "Enabling new device in LAVA"

● Getting your physical board installed in Linaro's Cambridge Lab

Once your device type is supported in LAVA, and the LAVA software deployed to the Lab,
you are ready to request that your boards be installed in Linaro's Cambridge Lab.

Hardware Requirements
The Lab has some basic Hardware Requirements for boards being installed in the lab. It's
advisable to read the "Automation and hardware design" and "LAB Device Deployment
Guide" pages for more detailed information:

Version 0.1 Initial Draft
February 10, 2021

https://shop.linux-automation.com/
https://shop.linux-automation.com/
https://collaborate.linaro.org/display/CTT/MuscaB1
https://community.arm.com/developer/tools-software/oss-platforms/w/docs/552/musca-b1-firmware-update-qspi-eflash-boot-recovery
https://collaborate.linaro.org/download/attachments/132161009/DAPLink_QSPI_V34.bin?version=1&modificationDate=1596628064578&api=v2
https://github.com/ARMmbed/DAPLink/blob/master/docs/MSD_COMMANDS.md

https://collaborate.linaro.org/display/CTT/Automation+and+hardware+design
https://collaborate.linaro.org/display/CTT/LAB+Device+Deployment+Guide

Basic requirements:
● The board must boot when power is supplied

○ The Lab uses PDU switches to power cycle boards when needed
● The board must have a uniquely identifiable serial port

○ If the board provides a 9 pin D-SUB, a suitable FTDI serial converter will
provide this

○ If the board provides a USB serial port, the Serial Number attribute of the
USB port must be unique. If not, it may be possible to install a RaspberryPi
dispatcher to isolate the board from the main Lab.

● The board must be able to be flashed in a reliable manner using automated tools
○ No button presses or manual steps are permitted
○ If your device boots via an SDcard, an SDmux can be used to reflash the

board while it is powered off.

How to get your board installed in the Linaro Cambridge Lab
Once your board is supported in the LAVA software, and your board meets the Hardware
Requirements, you can raise an LSS ticket to get your board installed in the Lab.

1. Go to https://projects.linaro.org/secure/CreateIssue!default.jspa
2. Fill in the drop down boxes:

○ Project: LAB & System Software (LSS)
○ Issue Type: Ticket
○ Click Next

3. Fill in the required details
○ Summary: You should fill in the "Summary" with a snappy title. I've started to

prefix my titles with "TF CI: " to help identify them in the list of issues.
○ Components: "LAB"
○ Client Stakeholder: "Trusted-Firmware"
○ Validation Server: "validation.linaro.org"
○ Labels: "TrustedFirmware"

4. Fill in the Description
○ You will need to fill in the Description, even if you think the title is sufficient.

Provide enough overview detail so the request is clear to understand by
management, but make sure you include all the technical details you need for
the support engineer to install your board.

○ If you think you will need specific hardware, such as a dedicated dispatcher,
an SDmux, etc. then please describe that here.

○ Specify the type and number of boards you wish to be installed.
5. Click the "Create" button at the bottom of the page
6. Add Watchers

○ It's probably a good idea to add Don Harbin to the Watchers on the ticket.

Version 0.1 Initial Draft
February 10, 2021

https://collaborate.linaro.org/display/CTT/Automation+and+hardware+design
https://collaborate.linaro.org/display/CTT/LAB+Device+Deployment+Guide
https://projects.linaro.org/secure/CreateIssue!default.jspa

TF LAVA instance - tf.validation.linaro.org
LAVA instance for the Trusted Firmware project is set up in Linaro Harston LAB. It consists
of lava-master running on a hosted bare metal server, lava-dispatcher running on the same
server. Additional dispatchers are deployed using Raspberry Pi 42 hardware. More details
below.

TF LAVA instance settings are stored in salt and ansible repositories:
● Salt repository: https://git.linaro.org/lava/lava-lab.git/
● Ansible repositories:

○ https://git.linaro.org/lab-cambridge/ansible-lab.git/
○ https://git.linaro.org/lab-cambridge/lab-dns.git/
○ https://git.linaro.org/lab-cambridge/lab-dhcp.git/

TF LAVA instance replication
TF instance partially relies on Linaro infrastructure. Linaro’s login service (based on LDAP) is
used for users authentication and logging into the TF LAVA instance. Therefore it’s not
possible to replicate identical LAVA instance accounts outside of Linaro’s infrastructure.
Apart from that, all configurations are stored in salt or ansible repositories. Replicating the
remaining part of the instance can be done using salt and ansible tools with a new set of
inventory variables.

Before an instance is ready various ansible playbooks need to be run and, for LAVA set ups,
salt needs to be run.

For ansible, you need to go on deb-ansible host (ssh root@192.168.128.15). As root:

(cd /srv/lava-lab; git pull)
cd /etc/ansible/playbooks
ansible-playbook -i ../inventory/tf lava-lab.yml

The following playbooks are used to configure all the relevant parts:
● lab_sssd_auth.yml file: enable LDAP authentication
● lab_snmp_enable.yml file: enable SNMP, and non-free/contrib apt sources (needed

for working SNMP set up with APC PDUs)
● lab_docker.yml file: install docker apt repository and docker service itself
● lab_aws_client.yml file: enable AWS authentication with AWS to preload docker

images
● lab_lava_repo.yml file: add LAVA apt repository

2 As required by certain classes of hardware not being differentiable before the OS boots, therefore a
single device per dispatcher allows addressing these devices via an unique dispatcher (per device).

Version 0.1 Initial Draft
February 10, 2021

https://tf.validation.linaro.org/
https://git.linaro.org/lava/lava-lab.git/
https://git.linaro.org/lab-cambridge/ansible-lab.git/
https://git.linaro.org/lab-cambridge/lab-dns.git/
https://git.linaro.org/lab-cambridge/lab-dhcp.git/

● dhcp_tf.yml file: for the static leases and general DHCP server configuration
Installing LAVA (worker and master) is a manual process. After that, the lava-lab.yml file
takes care of setting up the correct device dictionaries, device types and health checks as
configured in the separate lava-lab repository.

Until the salt migration to ansible is complete you will need to go on tf-master.tflab host (ssh
root@10.88.16.10). As root:

(cd /srv/lava-lab; git pull)
salt ‘*’ state.highstate

Note: on a brand new installation, you will need to run the ‘salt’ command twice. It’s due to
an ordering problem in the salt state configuration. It will be fixed by the ansible migration.

LAVA Master
LAVA Master and dispatchers run the Debian distribution (at the time of writing, Debian 10
Buster). LAVA packages are installed from apt.lavasoftware.org repository. On top of the
basic installation, LAB specific configuration is applied with ansible.
Note: the installation of lava-server is a manual process (and still a work in progress), while
other configurations are automated and described in the ansible playbooks above.

LAVA Dispatchers
TF instance uses 2 types of dispatchers:

● x86 dispatcher running on the same hardware as LAVA master. This dispatcher hosts
Fast Models (FVP), QEMU, and Juno devices.

● Arm dispatchers running on Raspberry Pi 4 hardware. This dispatcher hosts MPS2
and Musca B1 devices.

LAVA dispatchers setup is described in the LAVA documentation:
https://lava.readthedocs.io/en/latest/admin/advanced-tutorials/deploying-rpi4b-as-worker/

Upgrades
Upgrades of LAVA software are performed after each LAVA release. All dispatchers and
master have to run the same version of LAVA software.

LAVA instance changes
All the changes are done by the LAB staff. They should be requested as Jira tickets
(https://projects.linaro.org/secure/CreateIssue.jspa) with the following fields:

● Project: LSS (LAB & System Software)
● Type: Ticket
● Component: LAB
● Client Stakeholder: Trusted Firmware

Version 0.1 Initial Draft
February 10, 2021

https://git.linaro.org/lava/lava-lab.git
https://lava.readthedocs.io/en/latest/admin/advanced-tutorials/deploying-rpi4b-as-worker/
https://projects.linaro.org/secure/CreateIssue.jspa

Most common cases where ticket is required include:
● Adding new device to the LAVA instance
● Changing firmware on the boards that require manual action
● Adding or lifting access limitations

Current list of available devices
Up-to-date list of devices is available from the LAVA web UI. A simplified view shows only
the device types. Currently, TF LAVA instance has Juno, MPS2, Musca B1 and QEMU
devices.

Local LAVA instance set up
Setting up a local LAVA instance that can be used for debugging or improving LAVA code, as
well as new device enablement can be done in a few ways. The easiest is to use the official
LAVA’s docker-compose repository and follow the README instructions.

New device enablement in LAVA
Enabling new devices in LAVA is described in the LAVA documentation.

Board setup

Juno
More details on Collaborate page: https://collaborate.linaro.org/display/CTT/Juno

Peripherals

Serial: Connected to serial console.

Power:

Ethernet: Both the front and the back interfaces need to be connected.

Storage: SSD and USB stick (for boot image).

Deployment

After various iterations of deployment methods, the current method is loading a master
image on SD card or USB stick, and booting a known good image from that. The known
good image can be found here.

Troubleshooting

Version 0.1 Initial Draft
February 10, 2021

https://tf.validation.linaro.org/scheduler/alldevices/active
https://tf.validation.linaro.org/scheduler/
https://git.lavasoftware.org/lava/pkg/docker-compose
https://git.lavasoftware.org/lava/pkg/docker-compose/-/blob/master/README.md
https://master.lavasoftware.org/static/docs/v2/devicetypes.html
https://collaborate.linaro.org/display/CTT/Juno
https://images.validation.linaro.org/snapshots.linaro.org/openembedded/lkft/lkft/sumo/juno/lkft/linux-stable-rc-5.1/62/juno-oe-uboot.zip

The most common issue with Juno is broken PDU ports. The ports get stuck in ON mode so
the board never reboots and can thus not interrupt the boot loader.

Another common issue is "Failed to erase old recovery image" which is generally an issue
with the SD card. It is solved as follows:

1. Take brand new SD card and a root/sudo user on your SD reader capable *nix device
2. Run "parted /dev/<diskID>
3. mklabel msdos
4. mkpart

a. primary
b. fat16
c. 1M
d. 2G

5. exit parted
6. mkfs.fat16 /dev/<diskID> -n JUNO<details>
7. Download the recovery image from a health check
8. Unpack and copy contents to SD card.
9. Put a new card in a Juno device and run a health check. It might have umount issues

on the first try. If so, try again.

MPS2
More details in Collaborate page: https://collaborate.linaro.org/display/CTT/MPS2

Peripherals

Serial: Connected to serial console or usb serial connected to host.

Power: 12v

Ethernet: One port connected.

USB: Mini usb connected to host.

Storage: sd card in an SD Mux.

Deployment

The technical reference manual can be found here.

An example health check with an image to use for deployment on MPS2 devices.

There is also access to a device dictionary which describes the process of using SDMux with
the board.

In order to use SDMux, the host must have sd-mux-ctrl installed.

Troubleshooting

Version 0.1 Initial Draft
February 10, 2021

https://collaborate.linaro.org/display/CTT/MPS2
https://www.linux-automation.com/en/
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards/mps2
https://tf.validation.linaro.org/scheduler/job/53307/definition
https://tf.validation.linaro.org/scheduler/device/mps2-04/devicedict
https://wiki.tizen.org/SD_MUX#Software

We found that the sd card containing the boot image easily got corrupted and that would
take the board offline until manual intervention is achieved.

This is mitigated with use of the SDMux and there have been few known issues since.

SD Mux can be bought from https://shop.linux-automation.com/.

Musca B1
More details in Collaborate page: https://collaborate.linaro.org/display/CTT/MuscaB1

Flashing the device for the first time.

Flashing instructions are available on ARM community pages. It's only possible to run the
Windows version of the instructions. Currently LAB uses QSPI firmware version 3.4.

firmware: DAPLink_QSPI_V34.bin

After initial flashing is done, the rest of the setup can be done with a Linux host. Some
commands for DAPLink can be found on ARMmbed Github repository.

Turn on automation

Boards need to have the 'automation' enabled. This is done by writing the 'auto_on.cfg' file to
the USB mass storage 'MUSCA_B' while pressing nSRST button.

Turn auto power on

There is a hidden command in the v3.4 firmware: Auto power can be turned on by writing
'auto_pwr.cfg' to the USB mass storage 'MUSCA_B' while pressing nSRST button. Turning
auto power off can be done by writing 'hard_pwr.cfg' to the USB mass storage 'MUSCA_B'
while pressing the nSRST button.

Version 0.1 Initial Draft
February 10, 2021

https://shop.linux-automation.com/
https://shop.linux-automation.com/
https://collaborate.linaro.org/display/CTT/MuscaB1
https://community.arm.com/developer/tools-software/oss-platforms/w/docs/552/musca-b1-firmware-update-qspi-eflash-boot-recovery
https://collaborate.linaro.org/download/attachments/132161009/DAPLink_QSPI_V34.bin?version=1&modificationDate=1596628064578&api=v2
https://github.com/ARMmbed/DAPLink/blob/master/docs/MSD_COMMANDS.md

SQUAD
SQUAD is a database storing test results from LAVA jobs and providing a dashboard where
results can be compared across CI jobs and metrics generated.

The top level SQUAD project is here:
https://qa-reports.linaro.org/tf/

TF-A
TF-A has several SQUAD project, the most interesting is tf-main:
https://qa-reports.linaro.org/tf/tf-main/

There are other project, but the details
https://qa-reports.linaro.org/tf/tf-gerrit-tforg-l1/
https://qa-reports.linaro.org/tf/tf-gerrit-tforg-l2/
https://qa-reports.linaro.org/tf/tf-tftf-gerrit-tforg-l1/
https://qa-reports.linaro.org/tf/tf-tftf-gerrit-tforg-l2/

TF-M
https://qa-reports.linaro.org/tf/tf-m/

Version 0.1 Initial Draft
February 10, 2021

https://qa-reports.linaro.org/tf/
https://qa-reports.linaro.org/tf/tf-main/
https://qa-reports.linaro.org/tf/tf-gerrit-tforg-l1/
https://qa-reports.linaro.org/tf/tf-gerrit-tforg-l2/
https://qa-reports.linaro.org/tf/tf-tftf-gerrit-tforg-l1/
https://qa-reports.linaro.org/tf/tf-tftf-gerrit-tforg-l2/
https://qa-reports.linaro.org/tf/tf-m/

7.Staging Trusted Firmware System
This was documented here, but has been copied here as we approach wider review:
https://docs.google.com/document/d/1qYEdhrYldBcnpVPNIYXG30n0CP8KUrF3DMq_EfAI4
3I/edit#heading=h.5y1mh3kp9xzw

Brief description of the setup
This document does not go into detail about each project, and is meant to be used as
guidelines and rules for accessing the next environment.

Servers:
- Jenkins Server https://ci.staging.trustedfirmware.org/
- x86_64-TF-02 Jenkins Agent
- Git/Gerrit https://review.trustedfirmware.org/

The staging setup or “next” is meant to be used for developers to be able to test the CI
infrastructure. The setup has been set up exactly the same as the production environment,
the major difference between them is developers use a staging Jenkins server instead of the
production server.

Rules & Environment setup
Staging environments have been set up in the next/* namespace location:
https://git.trustedfirmware.org/next.

The next/* namespace is mirrored from production. The only repository that is not mirrored is
the tf-<x>-job-configs repo. All other repositories are mirrored and as such the user should
branch out from master.

Users need to be placed in the `trusted-firmware-staging-approvers` Gerrit group. This is
done by creating a ticket, please see instructions at the bottom of the Open CI wiki page.
This group allows users to have submit and merge (+2) writes to all repositories under the
next/* namespace, without needing any approval from a peer.

Due to the nature of allowing users to self approve their submit/merge changes into Gerrit, it
is important that users understand that it triggers Jenkins jobs and as such care has to be
taken when deploying those changes.

Basic rules all developers should follow:
● Gerrit triggers and comments have to be disabled in the job. We do not want the

staging server sending comments back to Gerrit reviews.
● Job triggers have to be manual only. Timed events are not allowed, not unless it is

being used for testing.
● Developers must use their own job config, and not use master. Users must copy the

job config, append your username and work on that config.

Version 0.1 Initial Draft
February 10, 2021

https://docs.google.com/document/d/1qYEdhrYldBcnpVPNIYXG30n0CP8KUrF3DMq_EfAI43I/edit#heading=h.5y1mh3kp9xzw
https://docs.google.com/document/d/1qYEdhrYldBcnpVPNIYXG30n0CP8KUrF3DMq_EfAI43I/edit#heading=h.5y1mh3kp9xzw
https://ci.staging.trustedfirmware.org/
https://review.trustedfirmware.org/
https://git.trustedfirmware.org/next
https://review.trustedfirmware.org/admin/groups
https://developer.trustedfirmware.org/w/collaboration/openci/

How to setup basic next environment
You have two options:

● you can either clone the repo again from the /next/ location
● or add a remote to your existing clone of the production repo.

It might be easier to just add a /next/ remote to the user's existing repo clone and work from
that. However, the /next/ has had the “basic rules” applied, and as such it is important that
the user does not break these rules.

tf-m-job-configs and tf-a-job-configs are *not* mirrored from production. However the other
repos are, and as such the user can branch out from master and develop from there.

To add a remote, it is simply necessary to add /next/ the url. So
ssh://bhcopeland@review.trustedfirmware.org:29418/ci/tf-m-job-configs becomes
ssh://bhcopeland@review.trustedfirmware.org:29418/next/ci/tf-m-job-configs. This then can
be added with ‘git remote add gerrit-next
ssh://bhcopeland@review.trustedfirmware.org:29418/next/ci/tf-m-job-configs’ or cloned via
git clone <url>.

Once a remote has been added, the user can then do `git fetch gerrit-next` and then
checkout to that branch.

Sample script to clone the repositories:

#!/bin/sh

set -e

username=bhcopeland
for project in tf-a-ci-scripts tf-a-job-configs tf-m-ci-scripts tf-m-job-configs;
do
git clone "ssh://${username}@review.trustedfirmware.org:29418/ci/${project}"
cd ${project}
git remote add gerrit-next

ssh://${username}@review.trustedfirmware.org:29418/next/ci/${project}
git fetch gerrit-next
cd ..

done

I recommend the user to read https://jigarius.com/blog/multiple-git-remote-repositories for
understanding two remotes.

Once in this environment, it is recommended the user then checkouts a new dev location
and works from that. then copy the <job_name>.yaml file. This should be the same for the
<scripts> location too. Once set up it is recommended that the user appends these changes
to the job config.

- authorization:
anonymous:

- job-read

Version 0.1 Initial Draft
February 10, 2021

mailto:bhcopeland@review.trustedfirmware.org
mailto:bhcopeland@review.trustedfirmware.org
mailto:bhcopeland@review.trustedfirmware.org
https://jigarius.com/blog/multiple-git-remote-repositories

- job-extended-read
bhcopeland:
- job-read
- job-extended-read
- job-build
- job-cancel

It is important to note here, the user needs to replace bhcopeland with your own GitHub
username. From this, it allows you to manually trigger and canel the job.

Please ensure any triggers (timed based etc) are disabled. And please ensure silent: true
is set inside the gerrit trigger so no gerrit comments get triggered.

Workflow for next/tf-a-job-configs.git
This is the workflow for creating ‘per-user’ jenkins jobs in staging instance.
next/ci/tf-a-job-configs.git repository should be used in this case.

Version 0.1 Initial Draft
February 10, 2021

Workflow for other repositories
Other repositories, that are used inside the jobs, can be copied to other server (for example
git.linaro.org). This should be added as a new remote to the existing repository. After
changes are made and work well, they should be sent for review. Example below:

Similar workflow should be used when migrating changes to ci/tf-a-scripts and
ci/tf-a-job-configs repositories. Changes in the next/* should be sent for review against
repositories in ci/* path.

As noted above, changes in next/tf-a-job-configs can be self approved and merged.
Changes in user repositories can be pushed without reviews.

8.Misc Info
This information is used for creating this doc and is not needed for publishing

Relevant Tickets
Design and document Trusted-Firmware LAVA instance architecture

https://projects.linaro.org/browse/LSS-926
TF-CI Phase 2: CI user guide and document how to deploy local instance

https://projects.linaro.org/browse/LSS-1473

Version 0.1 Initial Draft
February 10, 2021

https://projects.linaro.org/browse/LSS-926
https://projects.linaro.org/browse/LSS-1473

Slides
https://docs.google.com/presentation/d/1NQw0-Uc_cmmxz30i_-cBsG9jBCr6uUYR-CD1eKE
sk2I/edit?usp=sharing

M11 Documentation and User Guide (10 days timeboxed)

1. User Guide
1. From the TF *code* developer's perspective: "what do I do?"
2. submit a gerrit review, get results reported in gerrit review

2. From the maintainer's POV
1. how to navigate ci.trustedfirmware.org
2. how to trigger jobs, and track results

3. LAVA documentation (from the user's POV, not developer)
1. which platforms are supported for each project
2. how to navigate tf.validation.linaro.org
3. how to read a job and investigate results

4. Pipeline description
1. How is the CI structured?
2. Start with the Jenkins Job Builder (JJB) configs
3. show how they create jobs on ci.trustedfirmware.org
4. show how they hook into tf-[am]-ci-scripts.org

5. tf-[am]-ci-scripts Overview

Version 0.1 Initial Draft
February 10, 2021

https://docs.google.com/presentation/d/1NQw0-Uc_cmmxz30i_-cBsG9jBCr6uUYR-CD1eKEsk2I/edit?usp=sharing
https://docs.google.com/presentation/d/1NQw0-Uc_cmmxz30i_-cBsG9jBCr6uUYR-CD1eKEsk2I/edit?usp=sharing

