
OP-TEE and FuSa 
Workshop



Agenda
● Vision
● Use cases discussion
● What is the right scope?
● State of the research
● “Who do what” discussion (Development, LTS, archiving, assessment)
● Next steps
● Open topics for discussion



Vision
TrustZone is a key asset to build value for trust and safety. 

Adding discrete processors to deal with trust and safety can be expensive in space, 
lower performance and in some cases lower security.

Safety ready OP-TEE is one aspect of a broader effort to make TEEs a first class citizen 
of the computing world.



Why consider safety standards for OP-TEE ?
We see usage of OP-TEE in safety-critical contexts
● Automotive, robotics, aeronautics, drones...

Cortex R-82 and Cortex AE class processors opens new doors to safety environments 
that can also run Linux and thus the firmware need to be ready for those solutions 
(Trusted Substrate is functional on a 32 bit environment that does not have EL3 and hence can be adapted to very 
diverse architectural contexts)



Use Cases



Use-Cases
● Firmware role when booting and operating safety certified OS or hypervisor
● Safety certified TA (a core is dedicated to this and stays in secure state)
● Safety certified VMM with Hafnium as hypervisor

○ VMM role and FF-A backend
○ Secure device sharing amongst safety certified Secure Partitions

● RAS handling in OP-TEE in Secure SRAM 



Scope



What is the right scope ?
● To start with focus on only secure world component of OP-TEE
● Any external dependencies should be captured in assumptions.

● Keep non-secure world out of picture
● Keep secure firmware out of picture



What is the right scope ?
OP-TEE Message ABI - SMC or FF-A based

S-EL1 limit

S-EL1/S-EL0

GlobalPlatform TEE Core Internal API

Trusted Application

OP-TEE Core

Thread handling Crypto

RPC

Entry / exit

Interrupt handling

Syscall handling

Paging

Abort handling

In FuSA scope

Not in FuSA scope

FF-A API

Secure Partition

TA handling

SP handling

Legend

Ldelf API

Ldelf

Ldelf handling

Memory mappingSecure Storage

Libtomcrypt

Mbed TLS

Drivers

AArch64

AArch32

Platform code



State of Research



What is Functional Safety ?
● Functional Safety is absence of unreasonable risk due to hazards (potential source 

of harm) caused by malfunctioning behavior of the complex electronic systems. 
[ISO 26262]

● Functional safety seeks to reduce the level of risk in a device or system.
● Ability of the system to react on potentially dangerous condition by using safety 

function and reduce the risk.  
● Examples include the deactivation of a medical infusion pump should it 

malfunction or the automatic activation of an overflow valve when a certain liquid 
or pressure level has been reached.



Standards

Image - https://www.tuv-nord.com/in/en/services/product-certification-ce-atex-sil-risk-assessment/functional-safety/



More on standards
IEC 61508 is a basic functional safety standard applicable to all industries. It defines 
functional safety as: “part of the overall safety relating to the EUC (Equipment Under 
Control) and the EUC control system which depends on the correct functioning of the 
E/E/PE safety-related systems, other technology safety-related systems and external 
risk reduction facilities.” The fundamental concept is that any safety-related system 
must work correctly or fail in a predictable (safe) way.

ISO 26262 is an adaptation of IEC 61508 for Automotive Electric/Electronic Systems. It 
is being widely adopted by the major car manufacturers.

Based on our understanding so far, we would target IEC61508 which is the parent 
of all standards. There should be 5 to 10 % effort required to shift to other standards 
when artifacts are ready.

https://en.wikipedia.org/wiki/ISO_26262


Safety Integrity Levels (SIL/ASIL)
● Safety Integrity Level (SIL) is a risk 

classification scheme

● The higher the risk, higher the rigour or 
‘integrity’ of the development process and 
the necessary risk reduction 

● Based on current requirements received, 
we plan to target SIL2 level of IEC 61508



What do the standards demand ?
● All functional safety standards start by defining a product life cycle.
● Safety requirements need to be fully defined for the project



What do the standards demand ?
Documentation
● Requirements specification
● Documentation on architecture, design and modules, coding standard 
● Testing on module and integration level
● Validation of requirements 
● Tools, reference hardware configuration

Processes
● Able to demonstrate that requirements are correctly implemented by architecture, 

unit design, code
● The requirements, architecture, unit design, code and testing comply to the best 

practices described by the safety regulations
● The development process complies with regulations
● Able to demonstrate that all processes were strictly followed



What do the standards demand ?
Basic Prerequisites
● Documentation of

○ Software Development Process
○ Software Environment
○ Safety Plan
○ Guidelines for Modelling ,Coding
○ Verification Plan
○ Compatibility, dependency and process consistency guidelines

Work Product
● Documentation of software development activities, plans and processes



Long Term Maintenance
● The safety of the end system has to be ensured over its life e.g. 15 years 
● Safety-critical Bug investigations shall be performed promptly 
● The entire project safety case shall be retained and retrievable



Coding Standards
● Certification does not mandate MISRA-C compliance but it is a de-facto standard 

for embedded safety, last release 2012
● Need to identify which rules should apply. 

○ Establish base coding guideline
○ Agreement with community

● MISRA-C is proprietary and single user license
○ How to make it available to everyone ?

● Commercial Tools for checking MISRA compliance
○ Parasoft’s tools
○ Coverity
○ Helix QAC

● Open source tools
○ gcc 
○ cpptest

● How to integrate with CI ?



● A Safety Element out of context (SEooC) is a safety-related element which is not 
developed for a specific item. This means it is not developed in the context of a 
particular system or vehicle. 

● When there is no customers to define input requirements, the product is called 
Safety Element out of Context (SEooC) and its designed based on assumptions.

● It is important to identify the possible use-cases, define these assumptions and 
decide the scope.

Approach



FuSa Assessment and Certification
The purpose of Functional Safety Assessments (FUSA) is twofold: 
● To ensure that all the activities and documentation for the particular Safety 

Lifecycle (SLC) phase have been completed as per requirements; 
● To help prevent systematic failures from being introduced. 

FuSa assessment can be done by third parties. It helps in reducing the certification 
time, provides confidence.

How do we ensure the artifacts we create meet the standards requirements ?
● Have certification/assessment partners join the effort right from the beginning

How should we fund it ?



How to achieve this in an open source project ?
● It is not impossible

○ Tailoring is required
● Efforts underway in 

○ ELISA
○ XEN
○ Zephyr

● We need to sync up and pick up from their learnings



Who does what ?
OP-TEE

Open Source 
maintainers Linaro** OEM/Product vendor

Code changes
MISRA-C
Documentation
Commercial Tools
Assessment
Certification

Long term maintenance/ 
Archive

**  Linaro along with the Assessors



Next Steps
Linaro has the TEE expertise, but we’re lacking experience working with safety 
certification. We need to educate ourselves, talk to the industry, talk to maintainers, 
create initial plans etc. 

Initial Deliverables being planned
a) A report detailing and describing the full scope and giving some rough estimates 

of what it would take in terms of efforts to have OP-TEE ready for 
SIL-2/IEC-61508 (equivalent to ASIL-B in ISO-26262).

b) A report describing where OP-TEE is in a need for doing MISRA fixes and give 
rough estimates of efforts it would take to implement all fixes.



Open topics for discussion
● Safety personnel (Linaro and contractors)
● Other considerations from participants?
● Community organizations and funding?



Appendix A



Appendix A Index
● ARM Trusted Firmware and OP-TEE
● Normal world

○ optee_client
○ Generic TEE driver
○ Shared Memory

● Secure world
○ SMC Interface
○ GlobalPlatform APIs
○ Cryptographic Abstraction Layer
○ Secure Storage

● REE FS
● RPMB FS

○ Trusted Applications
● Xtest

● OP-TEE - History and Origin
● OP-TEE

○ Details
○ Testing
○ Gits
○ LOC data
○ Cyclomatic Complexity

● OP-TEE Licenses
● Releases
● Security Issues

https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#'=
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#ree-fs-secure-storage
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#rpmb-secure-storage


● Open Portable Trusted Execution Environment
● Origins from ST-Ericsson / STMicroelectronics proprietary TEE
● Been developed for >10 years
● GlobalPlatform based TEE

OP-TEE - History and origins

2010 2013 2014 2015

GP compliance!

OP-TEE

2019

Ownership from
STM to Linaro TrustedFirmware.org



OP-TEE Details
Documentation
https://optee.readthedocs.io/en/latest/general/about.html

Coding Standards 
https://optee.readthedocs.io/en/latest/general/coding_standards.html#

Contribution and Reviews
https://optee.readthedocs.io/en/latest/general/contribute.html

- Through github
- Pull Requests are created
- Review feedback - Add fixup patches on top of your existing branch. 
- Finalizing your contribution - Once the sender and reviewers have agreed on the patch set, which is when all the 

people who have commented on the pull request have given their Acked-by: or Reviewed-by:,sender need to 
rebase, squash commits , add tags and send the PR.

-

https://optee.readthedocs.io/en/latest/general/about.html
https://optee.readthedocs.io/en/latest/general/coding_standards.html#
https://optee.readthedocs.io/en/latest/general/contribute.html


OP-TEE Testing
Testing / quality / SCM
• xtest: The test framework for OP-TEE
• Run and fix checkpatch.pl warnings and errors on all files
• Uses Travis and Linaro CI for continuous integration and automated testing (using QEMU)
• Travis daily cron jobs (full setup, all boards)
• Coverity
• IBART testing
• GP-TEE Compliance - GP test v2.0.0.2 
• optee-examples

https://github.com/OP-TEE/optee_test
https://github.com/torvalds/linux/blob/master/scripts/checkpatch.pl
https://travis-ci.org/OP-TEE/optee_os
https://ci.linaro.org/view/op-tee/
https://github.com/OP-TEE/build#5-platforms-supported-by-buildgit
https://scan.coverity.com/projects/op-tee-optee_os
https://github.com/jbech-linaro/ibart
http://optee.mooo.com:5000
https://github.com/linaro-swg/optee_examples


OP-TEE gits
● optee_client

● optee_os

● optee_test

● optee linux driver

● optee_examples

● optee_benchmark

● optee_docs

● build

● Manifest

Quick Overview of Design

https://optee.readthedocs.io/en/latest/building/gits/index.html
https://optee.readthedocs.io/en/latest/building/gits/optee_client.html
https://optee.readthedocs.io/en/latest/building/gits/optee_os.html
https://optee.readthedocs.io/en/latest/building/gits/optee_test.html
https://github.com/linaro-swg/linux/tree/optee/drivers/tee
https://optee.readthedocs.io/en/latest/building/gits/optee_examples/optee_examples.html
https://optee.readthedocs.io/en/latest/building/gits/optee_benchmark.html
https://optee.readthedocs.io/en/latest/building/gits/optee_docs.html
https://optee.readthedocs.io/en/latest/building/gits/build.html
https://optee.readthedocs.io/en/latest/building/gits/manifest.html


LOC data (using cloc)

Repo C C/C++ Headers Assembly

optee_os 219920 41310 7359

optee_client/libteec 955 133 0

optee_client/tee-supplicant 2836 218 0

optee_test 74588 25948 0

optee_examples 1405 125 0

linux/drivers/tee 4230 581 0

https://github.com/OP-TEE/optee_os
https://github.com/OP-TEE/optee_client/tree/master/libteec
https://github.com/OP-TEE/optee_client/tree/master/tee-supplicant
https://github.com/OP-TEE/optee_test
https://github.com/linaro-swg/optee_examples
https://github.com/linaro-swg/linux/tree/optee/drivers/tee


Cyclomatic Complexity (optee_os)
We did some experiments using -  https://metrixplusplus.github.io

Results :
Detailed sheet

https://metrixplusplus.github.io/
https://docs.google.com/spreadsheets/d/1bRm2oYpDGbN8ymaf6go0mEYMinMRm2c85fa-5JJB7po/edit#gid=1539608740&fvid=909174084


OP-TEE licenses
● BSD 2-Clause

○ Most of the code, but there are also a few libraries with MIT, Apache2 
● GPLv2

○ OP-TEE’s Linux kernel driver
○ xtest host application (normal world)

● Contributor License Agreement (CLA)
○ Developer Certificate of Origin (DCO)

https://optee.readthedocs.io/general/contribute.html

● SPDX: In 2017 we added SPDX to all files

https://optee.readthedocs.io/en/latest/general/contribute.html?highlight=contribution%20


OP-TEE releases
● Quarterly releases

○ Right after Linaro Connects
○ Somewhere in between two Linaro Connects

● What devices?
○ Linaro tests all devices at our hands
○ For other devices we rely on external contributors (maintainers)

● Release notes?
○ Latest changes can be read about in the CHANGELOG.md file
○ Follows Semantic Versioning 2.0.0

https://github.com/OP-TEE/optee_os/blob/master/MAINTAINERS
https://github.com/OP-TEE/optee_os/blob/master/CHANGELOG.md
https://semver.org/


OP-TEE security issues
● Security advisories page at optee.org

○ https://www.op-tee.org/security-advisories
○ We request CVE’s when appropriate

● Vulnerability Reporting Process
○ The OP-TEE project as part of the TrustedFirmware.org organization is using the security incident 

process as described at the TrustedFirmware.org security incident  page.

● How to report security issues?
○ To report an issue, please follow the process as specified here. The email address to use can be 

found at the Mailing Aliases page.

https://www.op-tee.org/security-advisories
https://developer.trustedfirmware.org/w/collaboration/security_center
https://developer.trustedfirmware.org/w/collaboration/security_center/mailing_aliases


Appendix A Index
● ARM Trusted Firmware and OP-TEE
● Normal world

○ optee_client
○ Generic TEE driver
○ Shared Memory

● Secure world
○ SMC Interface
○ GlobalPlatform APIs
○ Cryptographic Abstraction Layer
○ Secure Storage

● REE FS
● RPMB FS

○ Trusted Applications
● Xtest

● OP-TEE - History and Origin
● OP-TEE

○ Details
○ Testing
○ Gits
○ LOC data
○ Cyclomatic Complexity

● OP-TEE Licenses
● Releases
● Security Issues

https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#'=
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#ree-fs-secure-storage
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#rpmb-secure-storage


ARM Trusted Firmware and OP-TEE





optee_client
● Libtee.so

○ Client library serving user space with TEE access
○ Implements GP Client API v1.0
○ Communication with the TEE goes through the Generic TEE Linux kernel driver

● Tee-supplicant
○ Daemon serving secure

world with normal world 
features, like for example 
file system access.

Communicates with secure 
world using RPC messages



Generic Linux kernel TEE driver
● Consists of a TEE framework and drivers

○ A generic framework handling communication with user space
○ A backplane driver aimed for a special platform / hardware

● Manages the shared memory pool

● (Contains a “kernel API” 
exposing the same 
functionality as GP Client API 
does in optee_client)



Generic TEE driver communication

tee-supplicant libtee.so

Normal world: User space

Normal world: Linux kernel

Generic TEE driver / framework

Backplane driver
(OP-TEE or other TEE specific implementations)

Secure world: Monitor + Trusted OS

Uses own set
of IOCTL’s

Uses of set
of IOCTL’s



Shared memory
● OP-TEE’s Linux kernel driver maintains shared memory
● It uses a piece of DRAM (configured by secure world) that is handled as a memory pool
● Memory allocations can be triggered both from normal world and secure world (involves RPC 

messaging)



Appendix A Index
● ARM Trusted Firmware and OP-TEE
● Normal world

○ optee_client
○ Generic TEE driver
○ Shared Memory

● Secure world
○ SMC Interface
○ GlobalPlatform APIs
○ Cryptographic Abstraction Layer
○ Secure Storage

● REE FS
● RPMB FS

○ Trusted Applications
● Xtest

● OP-TEE - History and Origin
● OP-TEE

○ Details
○ Testing
○ Gits
○ LOC data
○ Cyclomatic Complexity

● OP-TEE Licenses
● Releases
● Security Issues

https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#'=
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#ree-fs-secure-storage
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html#rpmb-secure-storage


Secure world



SMC Interface - teesmc
● OP-TEE follows Arm’s SMC calling convention
● However the SMC calling convention does not mandate how the TEE data should be handled, 

therefore we have created optee_msg protocol



● GP Client API v1.0
○ Used by clients both in user space and Linux kernel

● GP Internal API v1.1
○ Cryptographic API
○ Secure Time
○ Secure Storage
○ Arithmetical API

● GP Socket API
○ TCP and UDP support in Trusted Applications

GlobalPlatform

http://globalplatform.org/specs-library/tee-client-api-specification/
https://globalplatform.org/wp-content/uploads/2018/04/GPD_TEE_Internal_Core_API_Specification_v1.1.1_20160614.pdf
https://globalplatform.org/specs-library/tee-sockets-api-specification-v1-0-1/


● Default cryptographic software library in OP-TEE is LibTomCrypt, but mBedTLS can also be used from 
a Trusted Application point of view

● TEE Cryptographic Operations API is a set of APIs in OP-TEE that makes it easier to add support for 
other cryptographic engines (both software and hardware)

● [3] The crypto_*() functions implement the actual algorithms and helper functions.
● For more details, please read the crypto documentation

Cryptographic Abstraction Layer

-   some_function()                             (Trusted App) -
[1]   TEE_*()                      User space   (libutee.a)
------- utee_*() ----------------------------------------------
[2]       tee_svc_*()              Kernel space
[3]         crypto_*()                          (libtomcrypt.a and crypto.c)
[4]           /* LibTomCrypt */                 (libtomcrypt.a)

https://optee.readthedocs.io/en/latest/architecture/crypto.html


● Secure Storage in OP-TEE is implemented according to what has been defined in GlobalPlatform’s 

TEE Internal Core API (here called Trusted Storage). This specification mandates that it should be 

possible to store general-purpose data and key material that guarantees confidentiality and integrity 

of the data stored and the atomicity of the operations that modifies the storage (atomicity here means 

that either the entire operation completes successfully or no write is done).

● There are currently two secure storage implementations in OP-TEE:

○ The first one relies on the normal world (REE) file system. 
○ The second one makes use of the Replay Protected Memory Block (RPMB) partition of an eMMC 

device, and is enabled by setting CFG_RPMB_FS=y. 

Secure Storage 

For more details, please read the secure storage documentation

https://optee.readthedocs.io/en/latest/architecture/globalplatform_api.html#tee-internal-core-api
https://optee.readthedocs.io/en/latest/architecture/secure_storage.html


REE FS Secure Storage



RPMB secure storage



Trusted Applications
● User TA’s

○ Stored as signed ELF files in flash or as installed TA’s in secure storage
○ Loaded using RPC messaging
○ Signed using RSA signature (PKCS #1 v1.5, SHA256)
○ Isolation (separate stack, heap etc)
○ TA 2 TA communication

● Static / Psuedo TA’s
○ Compiled into TEE core, running in kernel space
○ Cannot really compare this to a User TA more than they use the same interface

https://optee.readthedocs.io/architecture/trusted_applications.html#user-mode-trusted-applications
https://optee.readthedocs.io/architecture/trusted_applications.html#ree-filesystem-ta
https://optee.readthedocs.io/architecture/trusted_applications.html#secure-storage-ta
https://optee.readthedocs.io/architecture/trusted_applications.html#pseudo-trusted-applications


xtest
● This is the main test suite for OP-TEE

● Possible to extend the test suite to also make 
use of the GP TEE Compliance test suite

● Uses TA-dev-kit from optee_os and TEE client 
API from optee_client



Thank you


